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Abstract

Troubled by unreliable estimates of the fractal dimension from straightforward box-counting
applied to invasion percolation in million site short-wide systems (i.e., the length in the average
2ow direction is the smaller dimension), we undertook a study of the e!ect of aspect ratio on
fractal dimension determinations and on avalanche structure. In box-counting, we found evidence
of a competition between the di!erent singular behaviors associated with the bulk and the external
hull (interface), which was most noticeable for the short-wide systems with a long external
hull. Modifying the box-counting to exclude those boxes covering the external hull provides
results for the short-wide systems which are consistent with results from the literature and
from straightforward box-counting on long-narrow systems. Not surprisingly, we found that the
avalanche size distribution was ‘cut o!’ by the length in the short-wide systems; however, we also
found that the distribution was cut o! by the width in the long-narrow systems. Therefore, the
smaller dimension served as a cut-o! length for the distribution of avalanche sizes, so that in the
long-narrow systems, the distribution of avalanche sizes collapses long before the injected 2uid
reaches the outlet. This results in ;ngering patterns in the long-narrow systems that are di!erent
from those in the short-wide systems where the avalanche size distribution is maintained all the
way to the outlet. Determining the fractal dimension from the power-law dependence of mass
upon a typical length scale was found to be una!ected by the length of the external hull, providing
the standard literature values of fractal dimension for the problematic short-wide systems.
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1. Introduction

The ;ngering of the injected 2uid associated with immiscible, two-phase 2ow in
porous media is one of the major reasons for the ineIciency of several important geo-
logic recovery/remediation processes. In secondary oil recovery, water displaces much
less than half of the oil in any given formation, because the water ‘;ngers’ into the
oil-saturated reservoir. In CO2 sequestration (a means to mitigate global warming),
where carbon dioxide is injected into brine-saturated porous media (e.g. sub-sea 2oor
formations, deep saline aquifers) for long-term storage, ;ngering limits the available
storage capacity so that only a small fraction of the reservoir is occupied by CO2.
In remediation of DNAPL spills, which can enter and contaminate the groundwater,
standard pump and treat remediation methods are often ine!ective because water 2ush-
ing in porous media typically mobilizes only a small portion of the pollutant; a better
understanding of the location of the DNAPL within the water table can improve this
process. Our focus in all of these processes is on the eIciency of displacement, so it
is important to understand how the injected 2uid occupies the medium. Therefore, this
study focuses on the saturation of a non-wetting 2uid injected into porous media—its
;ngering, and its fractal character.

For decades, it has been accepted that displacement eIciency can depend strongly
upon injection rates, i.e., capillary numbers, Nc = (viscous forces)=(capillary forces),
where the capillary forces dominate over viscous forces [1]. In practical injection situ-
ations, low velocities are found far from the injection well-bore where the 2uid spreads
radially and gradually slows down. In the extreme limit of in;nitesimal injection rate,
e!ectively Nc = 0, Wilkinson and others introduced a simple model of immiscible,
two-phase 2ow called invasion percolation (IP) [2,3]. In this model, the non-wetting,
injected 2uid advances solely through the largest throat (the one with the smallest cap-
illary pressure) on the interface between the injected, non-wetting 2uid and the wetting,
defending 2uid during each time step. Far from the injection well, where the simple
model should be most applicable, the interface is becoming longer and longer so that
there are more and more interfacial throats through which 2ow may occur.

Far from the injection well, as velocities approach zero, viscous e!ects may be
neglected, so that the pressures are uniform throughout any one 2uid. One can imagine
drawing a box around such an interface location and studying the properties of the
2uids at those locations as they move. The pressure in the injected 2uid is uniformly
equal to the pressure at the inlet of such a box, while the pressure in the wetting 2uid is
uniformly equal to the outlet pressure. The pressure drop at the interface (inlet pressure
minus outlet pressure) is adjusted to be just large enough to advance the non-wetting
2uid through the largest allowed throat on the interface. Therefore, this pressure drop
must always be positive and the wetting 2uid cannot displace the non-wetting 2uid from
an occupied pore-body. Since the wetting 2uid cannot displace the non-wetting 2uid, a
fully encircled region of wetting 2uid is immobilized or trapped, in that the non-wetting
2uid is prevented from advancing into this trapped region. Invasion percolation with
trapping (IPwt) modi;es the standard IP rules to forbid advance into a ‘trapped’ region
[4–7]. A number of these ‘trapped’ regions can be seen near the inlet of the pattern
in Fig. 1. Recently, we have presented results from a standard pore-leve model of



Fig. 1. A characteristic IPwt pattern occupying more than 2 × 105 lattice sites in a porous medium with
more than a million lattice sites (size 1440 × 720).

two-phase 2ow in porous media, which shows that the model reproduces saturations
and 2ow patterns from IPwt in the limit of small capillary number [8].

This IPwt model has been widely studied since its introduction [2,3,7,9–13]. There
have also been many applications of this model and closely related models to a variety
of increasingly more complex porous media 2ow problems [14–16]; Blunt [17] has
provided an excellent review of the most recent work. The injection patterns have
been shown to be self-similar fractals with a value of fractal dimension close to that
of the standard percolation model. Recent work on larger systems favors a value of
fractal dimension below that of ordinary critical percolation theory, Df ≈ 1:82, with
uncertainties that do not overlap the ordinary critical percolation theory value, Df ≈ 1:89



[5,7,13,18]. Other studies, typically on smaller systems, indicate that Df ≈ 1:89 is a
better ;t to the observed results [19–21]. A recent paper performed simulations on
lattices with more that 250 million sites and used a correction to scaling to account
for any remaining size dependence. This paper argues convincingly that the fractal
dimension of IPwt should be 1:825 ± 0:004 [13].

The 2ow in the IPwt model exhibits phenomena, variously called ‘bursts’, ‘Haines
jumps’, or ‘avalanches’, where the advance of the interface occurs in a localized region.
In this region, capillary pressures are lower than anywhere else on the interface. These
avalanches were ;rst studied in sandpile models of self-organized criticality (SOC)
[22,23]. The sandpile models were found to self-organize to a critical point where
avalanches of all sizes occurred and where the size distribution of these avalanches
obeyed a power law. These avalanches were observed in IPwt [12]; and a scaling
theory was developed to describe the number distribution and the correlations of these
avalanches [11]. In a recent paper, we investigated the causes of the characteristic IPwt
;ngering. In studying the spatial distribution of the avalanches, we found a size cut o!
depending upon the distance of the avalanches from the inlet. This cut-o! signals that
;nite-size systems cannot have achieved SOC, with avalanches at all size. Furthermore,
we found that the average size (mass) of these avalanches, 〈Ma〉, increased with their
average distance, 〈x〉, from the inlet as 〈Ma〉≈ 〈x〉1:1. As a result, larger avalanches
will tend to occur at the end of longer ;ngers causing preferential growth of these
long ;ngers at the expense of the shorter ;ngers, thereby explaining the characteristic
IPwt ;ngering.

Our previous work relied upon the time dependence of the average position, 〈x(t)〉,
and saturations, S(x; t) of the injected 2uid because of our focus on the time-dependent
occupation of the reservoir. In fractal models, the fractal dimension determines these
functional dependencies; for these systems with linear injection

〈x(t)〉 = At1+� ; (1)

where 1 + �= 1=(Df − 1) and

S(x; t) = t−�f(x=t1+�) ; (2)

where the time is proportional to the injected mass (or volume) and f(x=t1+�) is an
unspeci;ed function. Eq. (1) is equivalent to the familiar relation between the mass of
a linear-injection fractal such as the one in Fig. 1 and its linear dimension

M = C〈x〉Df−1 (3)

and Eq. (2) is a consequence of this relationship. In our earlier paper [21], these rela-
tionships as well as the space–time correlations [11,12] seemed to be more consistent
with a value of fractal dimension, Df ≈ 1:89, closer to that of ordinary percolation [5]
and less consistent with the widely accepted value, Df ≈ 1:82, from studies on much
larger systems [5,7,13,18].

We have performed IPwt simulations for a number of systems with approximately
one million sites but with signi;cantly di!erent aspect ratios (i.e., the ratio of length to
width, length/width). In Sections 2 and 4, we compare several methods of determining
the fractal dimension for these simulations: box-counting in Section 2, and mass vs.



various characteristic lengths in Section 4. We ;nd the box-counting results to be
sensitive to aspect ratio, while the other methods seem less so. This sensitivity of
box-counting to aspect ratio is also seen in a simple Koch curve pattern [18]. In
Section 3, we study the e!ect of aspect ratio upon the avalanche structure. Here, we
;nd that for 2ow in narrow systems the avalanche structure is cut o! long before the
2ow reaches the outlet; by the time the 2ow has advanced a distance approximately
equal to the width of the system, the avalanche distribution collapses. This suggests
that narrow IPwt systems cannot achieve SOC, thus altering the ;ngering structure.

2. Box-counting determinations of fractal dimension: e�ect of aspect ratio

In performing straight-forward box-counting for IPwt simulations on lattices which
are short (in the average 2ow direction) and wide (perpendicular to the 2ow), we
found a value for the fractal dimension which is much smaller than the accepted
values. Results are presented for ‘short-wide’ diamond lattices, which are 400 lattice
spacings ×2500 spacings, 360×2520, and 720×1440 [21]. 1 A portion (approximately
one-;fth of the total width) of one of these patterns is shown in Fig. 2.

The box-counting value of the fractal dimension for these short-wide systems is
consistently low, predicting Df ≈ 1:75. In these short-wide systems, there are a large
number of sites on the outer hull (those sites on the interface where the displaced 2uid
has a continuous path to the outlet—as opposed to sites on the interface enclosing a
trapped region). The 2ow pattern for one of the long-narrow (2520× 360) simulations
is shown in Fig. 3. For these long-narrow systems, with fewer sites on the outer hull,

Fig. 2. A ;fth of the width of a typical short-wide (400 × 2500) IPwt simulation. The breakthrough ;nger
is in this ;fth of the pattern.

1 It should be noted that the ‘lengths’ in these system sizes are in units of the nearest-neighbor distance
and are measured along a lattice diagonal (45◦ to the 2ow direction). However, the ‘widths’ do measure
the distance perpendicular to the 2ow being in units of

√
2 times a lattice spacing.



Fig. 3. The 2ow pattern (injection from the left—2ow to the right) for a long-narrow system (2520× 360).
Note the periodic boundary conditions connecting the upper edge with the lower edge. Note that there are
many fewer sites on the outer hull (those interfacial sites which are connected to the outlet on the right as
opposed to the interfacial sites on the left hand side of the ;gure which are enclosing trapped regions).

box-counting produces a value of fractal dimension, Df ≈ 1:80, consistent with the
values from some recent works [5,7,13,18].

When one does box-counting for the hull sites, one covers an L× L region with �2

boxes of side L=� and counts the number of these boxes which enclose an outer-hull
site. This number grows as Nhull(�)≈ �1:75 [24–27]. When one does box-counting for
the bulk, one counts the number of boxes which enclose any part of the injected 2uid
pattern; ideally, this should grow as Nbulk(�)≈ �Df . It seems likely that there may
be a competition between these two power laws, because the outer hull boxes are a
subset of bulk boxes. Because of this conjectured competition, one might expect that
the box-counting for the bulk would predict a lower, e!ective value for the fractal
dimension for the short-wide systems with a larger outer hull. To investigate this
conjecture, we present results of box-counting for IPwt simulations with a variety
of aspect ratios. But, ;rst we present results from the box-counting for the case of a
Euclidean bulk behind a fractal Koch curve [7]. The results of box-counting is presented
in ;gures showing both ln(N ) vs. ln(�) as well as ln(Nbulk − Nhull) vs. ln(�), which
attempts to reduce any such competition between the hull and bulk power laws.

To test this procedure on a simple fractal, we have produced the Koch curve
pattern shown in Fig. 4. The curve (outer hull) has the fractal dimension Df =
ln(4)=ln(3)≈ 1:26. Of course the bulk below this fractal curve is Euclidean with dimen-
sion, d= 2. Thus, the number of hull sites grows as Nhull(�)≈ �1:26, and box-counting
for the bulk should ideally predict a Euclidean dimension of 2. Our conjecture would
predict a competition between the fractal power law of the curve and the Euclidean
power law for the bulk below the curve, so that straight-forward box-counting for the
bulk would lead to a value of the dimension less than 2.

Fig. 5a shows the results of box-counting for the center third where the two sets
of data points nearly overlap because there are many more boxes covering the bulk
than the curve (i.e., Nb�Nint). For this center third, there should be relatively little
competition. Although the plots of ln(Nb) and ln(Nb − Nint) are nearly identical, the
slope of the mid-range values of � predict a dimension of 1.97 from straight-forward



Fig. 4. A Koch curve with seven generations of the standard 3–4 Koch transformation.

Fig. 5. The plots of ln(Nb) and ln(Nb − Nint): (a) for the center third of the Koch pattern in Fig. 4;
(b) for the two end thirds of Fig. 4; Typically, we have chosen to ;t the mid-range linear regions avoiding
the well-known problems associated with the small � (large boxes) and the large � (small boxes) extremes.

box-counting for the bulk (i.e., ln(Nb)) and a value 2.03 from ln(Nb − Nint). This
suggests that using Nb − Nint overcompensates slightly for the competition, which for
this case is the same amount by which Nb underestimates the fractal dimension.

Fig. 5b shows the results of box-counting for the end third where there are many
fewer boxes covering the bulk than there were in Fig. 5a. Still, there are many more
boxes covering the bulk than the curve (i.e., Nb�Nint). For these end thirds, there
should be somewhat more competition. Here, the slope of the mid-range values of
� predict a dimension of 1.94 from straight-forward box-counting for the bulk (i.e.,



ln(Nb)) and a value 2.03 from ln(Nb − Nint). Therefore, although using Nb − Nint

overcompensates slightly for the competition, its use provides a more accurate estimate
of the fractal dimension than does straightforward use of Nb.

For IPwt, the case of real interest, there can be many more hull sites than there were
in the case of the Koch curve. Figs. 6a–d present box-counting results for IPwt simu-
lations with “di!erent aspect rations”. In Figs. 6a and b, straightforward box-counting
for the bulk yields values of the fractal dimensions of 1.725 for the short-wide system
and 1.80 for the long-narrow system. Attempting to remove possible competition due
to the outer-hull boxes, the plots of Nbulk−Nhull yield values of fractal dimension which
are a more consistent 1.85 and 1.89.

In the cases shown in Figs. 6c and d, there is less of a di!erence between the aspect
ratios (1:2 vs. 2:1) than in the previous case where the aspect ratios were 1:7 and 7:1.
Straightforward box-counting for the bulk yields values of the fractal dimensions of
1.77 for both. Attempting to remove possible competition from the outer-hull boxes,
the plots of Nbulk − Nhull yield values of fractal dimension approximately 1.92.

Again in Fig. 6e, straightforward box-counting for the bulk in a short-wide system
yields too small a value of the fractal dimension, 1.70, while the plot of Nbulk −
Nhull yields a value of 1.81 closer to the expected range 1:80¡Df ¡ 1:90. A di!erent
complication in fractal dimension determination resulted from the size of the probe
used [28].

It should be added that box-counting for the external perimeter of the IPwt systems
discussed above led to a value of the fractal dimension of the external perimeter in
agreement with the predicted 4

3 ; we found values in the range 1:33 ± 0:04. Also,
box-counting for the length of the Koch curve led to a value Df = 1:26 ± 0:03 in
agreement with the exact value ln(4)=ln(3) = 1:262.

Clearly, the e!ect of the hull boxes is more signi;cant for the short-wide IPwt
systems, because the outer hull is so much larger in these systems. All of these re-
sults support our conjectured competition between the power laws for the number of
outer-hull boxes and the number of bulk boxes, allowing more consistent estimates of
the bulk fractal dimension from systems with widely di!ering aspect ratios. The expe-
rience with the Koch curve box-counting leads us to expect: (i) that Nbulk box-counting
will underestimate the fractal dimension, even with relatively few hull sites, and (ii) that
Nbulk −Nhull box-counting will only slightly overestimate the fractal dimension. There-
fore, we expect that the Nbulk box-counting values, Df ≈ 1:80, for the long-narrow
systems Figs. 6b and d, may be bit low, while the Nbulk − Nhull box-counting val-
ues, Df ≈ 1:90, for these same long-narrow systems may be a bit high. The results
above seem to favor a value of fractal dimension closer to that of ordinary percola-
tion theory, Df ≈ 1:89; conservatively, we estimate Df = 1:85 ± 0:05 for these small
systems.

3. Aspect ratio: the e�ect on avalanche structure

Since the seminal work of Bak et al. [22,23], it has been appreciated that many
dynamical systems achieve a self-organized critical point characterized by avalanches



Fig. 6. ((a) and (b)) The results from box-counting for a short-wide (360×2520) system and a long-narrow
(2520× 360) system. ((c) and (d)) The results from box-counting for another short-wide (720× 1440) and
a long-narrow (1440× 720). (e) The results from box-counting for another short-wide (400× 2500) system.



Fig. 7. The mass of all the avalanches vs. their greatest distance from the inlet, imax, for a short-wide system
(360 × 2520×) and a long-narrow system (2520 × 360 ).

of all sizes distributed according to a critical power law. The avalanche structure of
invasion percolation was studied in two papers which found characteristic scaling of
the short-time density–density correlations [11,12,21]. In a recent paper, we repro-
duced the results of the previous work for short-wide IPwt systems [21]. In addition,
we studied the spatial distribution of avalanches, and found that avalanche size was
cut o! by the distance, x, from the inlet so that one could have avalanches of all
sizes (necessary for criticality) only for very large systems. We also found that the
average size of avalanches, 〈Ma〉, increases with their average distance 〈x〉 from the
inlet, 〈Ma〉 ˙ 〈x〉1:1. This latter result explains the characteristic ;ngering of Inva-
sion Percolation because the longer a ;nger is, the more likely it is to grow through
a large avalanche than a small one; this explains the preferential growth of long
;ngers.

In studying the spatial distribution of avalanches for di!erent aspect ratios, we found
that the width in the long-narrow systems cuts o! the size of avalanches. This can be
seen in Fig. 7, which shows the size of an avalanche vs. imax, where imax is the greatest
distance from the inlet reached by that avalanche for both a short-wide (360 × 2520)
system and the corresponding long-narrow (2520 × 360) system. It is interesting that
one sees avalanches at a range of sizes out to maximum length of the short-wide
system, imax ≈ 360. Beyond that there are very few avalanches in the long-narrow
system, suggesting that the width of the long-narrow system also e!ectively cuts o! the
avalanche distribution. For the long-narrow system, there is only one avalanche beyond
the last one shown in the ;gure (Massa =1 at imax =748). That ;nal avalanche goes to
breakthrough and has a mass, Ma =196 780. This collapse of the avalanche distribution
for the long-narrow systems must result when an avalanche spans the full-width (or
most of the width) so that the vast majority of the interface (external hull) resides on
this avalanche, preventing the occurrence of a spatially separate avalanche. Therefore,



Fig. 8. The mass distribution of the avalanches for a long-narrow system ( ) with whose for a short-wide
system (�) is compared. In (a) results for the 2520 × 360 and the 360 × 2520 systems and in (b) results
for the 1440 × 720 and the 720 × 1440 systems are shown. We have scaled the number of avalanches of
mass m by the width because the number should be proportional to the width. Also, to improve statistics,
we have chosen to bin the avalanches, so that N (5) is the number of avalanches with mass between 1 and
10, N (15) is the number between 11 and 20, etc.

long-narrow systems cannot accurately represent the avalanche distribution of those real
systems that have long interfaces.

Figs. 8a and b compare the mass distribution of the avalanches of long-narrow sys-
tems with those of short-wide systems. If, as the above results suggested, the smallest
dimension (width or length) cuts o! the avalanche distribution, there should be no
di!erence between the two cases with the same smallest dimension (360 in Fig. 8a
and 720 in Fig. 8b). The data from the short-wide systems are less noisy, while the
data from the long-narrow systems seem to be scattered randomly above and below the
less-noisy short-wide system data. It is signi;cant that there is no obvious, consistent
(i.e., within the noise) di!erence between the avalanche distributions of long-narrow
systems and those of the short-wide systems.

However, one should expect more avalanches in a system with a larger cut-o!
dimension. That is if one compared the avalanche distributions of two short-wide
systems, 720 × 1440 and 360 × 2520, one should expect more avalanches in the
system with the larger value of the small dimension, i.e., in the 720 × 1440 sys-
tem. Fig. 9 compares the avalanche distributions of these two short-wide systems.
As expected, the 720 × 1440 system has a slightly greater number of avalanches
at all sizes. Not surprisingly, the number of avalanches is directly proportional to
the width; however, the number of avalanches is clearly not proportional to the
length.

4. Fractal dimension determinations from length-scale dependencies

In Section 2, we saw that straightforward box-counting is likely to underestimate
the bulk fractal dimension of systems where the hull and bulk have di!erent fractal



Fig. 9. The avalanches distributions of the two short-wide systems with di!erent values of the smaller
dimension, the 720 × 1440 system ( ) and the 360 × 2520 system (�) are compared. The 720 × 1440
system, with the larger value of the smaller dimension, has consistently more avalanches of all sizes up
those sizes where the noise overwhelms the di!erence.

dimensions especially in short-wide systems where the number of hull sites represents
a signi;cant fraction of the number of bulk sites. Our ad hoc procedure for eliminating
the hull–bulk competition is, at best, imperfect because it somewhat overcompensates
for the competition. Although straightforward box-counting gives the best value of bulk
fractal dimension for long-narrow systems, Section 3 shows that long-narrow-systems
truncate the avalanche structure and, therefore, misrepresent the IP ;ngering. Clearly, it
is advantageous to have methods for fractal dimension determination which are reliable
for the short-wide systems which faithfully reproduce the IPwt ;ngering relevant to
systems with long interfaces. In this section, we demonstrate the reliability of standard
methods based directly on Eqs. (1) and (3).

The fractal dimension of a quantity can be determined from the power-law depen-
dence of that quantity upon an appropriate length scale, i.e., as in Eq. (3). There
are several quantities which could provide reasonable estimates of the length scale.
In this section, we will study the dependence upon four di!erent estimates of the
length scale: (i) 〈xi〉, the average position of the interface (external hull) in the x
direction (the direction of average 2ow); (ii) 〈xm〉, the average position of the mass;
(iii) Wi=

√〈(xi − 〈xi〉)2〉, the average width of the interface (external hull); (iv) and the
average width of the interface Wm=

√
3〈x2

m〉 − 4〈xm〉2 + 〈xm〉 determined from averages
of the moments of the position of the injected 2uid. This last expression for Wm allows
the mass positions to determine the interfacial width; this was derived in an earlier



Fig. 10. The plots of mass vs. 〈xm〉: (a) for the 360× 2520 system, the best ;t is 1.95 〈xm〉0:84; (b) for the
720 × 1440 system, the best ;t is 1:9〈xm〉0:91. These ;ts indicate a value of fractal dimension in the range
1.84 to 1.91.

publication and was used to study the dependence of interfacial width upon viscosity
ratio for miscible 2ooding where the interfaces were substantially fragmented [29].

Figs. 10a and b show fractal plots of mass vs. 〈xm〉 for the two short-wide systems.
The values determined for the fractal dimension of the bulk are consistent with the ac-
cepted values 1:80¡Df ¡ 1:90. Furthermore, reasonable uncertainties in these values
will span the middle of this accepted range. It should be remembered that straightfor-
ward box-counting for these short-wide systems underestimated the value of the fractal
dimension, indicating values closer to Df ≈ 1:75.

The length of the external perimeter of a percolation cluster (number of external,
unoccupied sites, which are nearest neighbors to the external hull) has a fractal dimen-
sion Df = 4

3 [24–27]. Figs. 11a and b show plots of this perimeter length vs. 〈xm〉 for
the same short-wide systems. Although the results from ;ts to these data are consis-
tent with, but somewhat larger than the known value, reasonable uncertainties in these
‘best-;t’ values include the known value.

Similar fractal dimension determinations for the long-narrow systems provide similar
results for the fractal dimensions but with greater uncertainties because these data are
signi;cantly noisier than the data from the short-wide systems, especially for the larger
values of 〈xm〉.

To show that the other lengths provide acceptable length scales for a fractal di-
mension determination, we need only show that they are all linearly related to 〈xm〉.
Figs. 12a and b show that the average position of the mass 〈xm〉 and the interfacial
width Wm, from mass determinations are linearly related.

The linear relationships between 〈xi〉 and 〈xm〉 and between Wi and Wm are both
shown in Figs. 13a and b.

As expected, we have shown that the power-law dependence of a fractal quantity
upon an appropriate length scale provides reliable estimates of the fractal dimension



Fig. 11. The plots of external perimeter length vs. 〈xm〉: (a) for the 360 × 2520 system, the best ;t is 1.27
〈xm〉0:36; (b) for the 720 × 1440 system, the best ;t is 1.25 〈xm〉0:38. These ;ts indicate a value of fractal
dimension slightly larger than the exact value of 4

3 .

Fig. 12. The linear relation between Wm and 〈xm〉: (a) for the 360 × 2520 system; the best linear ;t is
Wm = 1:33〈xm〉; (b) for the 720 × 1440 system; the best linear ;t is Wm = 1:2〈xm〉.

for short-wide systems, without any apparent e!ect of the hull–bulk competition
observed in box-counting for these systems. Furthermore, we showed that there are
several quantities which provide reasonable estimates of the length scale: (i) 〈xm〉, the
average position of the mass; (ii) 〈xi〉, the average position of the (external hull);
(iii) Wi =

√〈(xi − 〈xi〉)2〉, the average width of the interface (external hull); and (iv)
the average width of the interface Wm =

√
3〈x2

m〉 − 4〈xm〉2 + 〈xm〉 determined from
averages of the position of the injected 2uid.



Fig. 13. The linear relationships both between 〈xi〉 and 〈xm〉 and between Wi and Wm: (a) for the 360×2520
system; the linear ;ts are given by 〈xi〉= 0:1 + 2:312 〈xm〉 and Wi = 0:1 + 1:44 Wm; (b) for the 720 × 1440
system; linear ;ts are given by 〈xi〉 = −1 + 2:70 〈xm〉 and Wi = −1 + 1:70 Wm.

In this section, we have demonstrated that reasonable determinations of the bulk
fractal dimension (or the perimeter fractal dimension) result from the use of Eq. (3)
relating the mass (or perimeter length) to the length scale 〈xm〉. Furthermore, we have
shown that di!erent length scales, 〈xi〉, 〈xm〉, Wi and Wm, are all linearly related as
they should be for this self-similar fractal. Furthermore, we have show that these meth-
ods provide more reliable values of the fractal dimension for short-wide systems than
straight-forward box-counting does.

5. Conclusions

In many of the important applications of two-phase 2ow in porous media, the in-
terface can be very long so that there may be nearly as many pore bodies on the
external interface as there are occupied by the injected 2uid. For example, far from an
injection well, where the simple IP model should be most applicable, since Nc ≈ 0, the
interface is becoming longer and longer so that there are more and more interfacial
throats through which 2ow may occur.

In Section 2, we saw that straight-forward box-counting for the bulk signi;cantly
underestimated the value of the fractal dimension for the short-wide IPwt systems,
where the number of boxes covering the outer hull, Nhull, is larger, i.e., comparable to
the number of boxes covering the bulk. All of the results in this section support our
conjectured competition between the power laws for the number of outer hull boxes
and the number of bulk boxes. In an attempt to reduce this competition, we studied
the power law behavior of Nbulk − Nhull. Although this power-law behavior slightly
overestimated the values of the fractal dimension; it did allow more consistently reliable



estimates of the bulk fractal dimension from systems with widely di!ering aspect ratios.
On the basis of all of our box-counting results, we estimate Df = 1:85 ± 0:05. Again,
we emphasize that this estimate is for the relatively small systems accessible to many
theoretical and experimental situations, including our own. Recent fractal dimension
determinations, which (i) used systems more than 100 times larger than our million
site systems and (ii) included scaling corrections to extrapolate to even larger systems,
estimated the fractal dimension to be, Df = 1:825 ± 0:004 [13].

IP exhibits SOC, where one has avalanches of all sizes, at the critical point. Of
course, avalanche size is truncated by the ;nite size of the system. In Section 3, we
showed that the width of long-narrow systems truncates the avalanche structure as ef-
fectively as the length of short-wide systems; in that, systems with the same ‘smaller di-
mension’, e.g. 360×2520 and 2520×360, have the same distribution of avalanche sizes.
Therefore, short-wide systems have a faithful avalanche structure over their full length;
this is especially relevant to real situations with long interfaces. Although straightfor-
ward box-counting is more reliable for long-narrow systems, the avalanche structure
is truncated long before the injected 2uid reaches the full length of these systems.
Figs. 2 and 3 show that the ;ngering, in the long-narrow systems with the truncated
avalanche structure, is very di!erent from the ;ngering in the short-wide systems with
a long interface. Since short-wide systems have a more reliable avalanche structure and
;ngering more consistent with those real applications which have a long interface, it
is important to have reliable methods of determining the fractal dimensions of these
systems.

In the ;nal section, we demonstrated that reasonable determinations of the bulk
fractal dimension result from the use of Eq. (3) relating the mass to any one of
several length scales. Furthermore, we have shown that this method provides more
reliable values of the fractal dimension for short-wide systems than straightforward
box-counting does. This method combined with the power-law behavior of Nbulk −
Nhull provide two reliable methods of determining the fractal dimensions of short-wide
systems.
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